3d Printer and 3D printing filament Edmonton

This article or chapter is incomplete and its contents need further attention. Some information may be missing or may be wrong, spelling and grammar may have to be improved, use your judgment!

Contents

3d Printer and 3D printing filament Edmonton

  • 1 Introduction
  • 2 Rigid polymers and co-polymers
  • 3 Solubles
    • 3.1 PVA
    • 3.2 High Impact Polystyrene (HIPS)
  • 4 Flexible
    • 4.1 Soft PLA
    • 4.2 Thermoplastic elastomer (TPE)
      • 4.2.1 Arnitel
      • 4.2.2 NinjaFlex
      • 4.2.3 NinjaSemiFlex
      • 4.2.4 3D Prima TPE
      • 4.2.5 Plasticized Copolyamide TPE (PCTPE)
      • 4.2.6 FilaFlex
      • 4.2.7 Nunus TPE
  • 5 Composites
    • 5.1 Laybrick
    • 5.2 Laywood
    • 5.3 Bendlay
  • 6 Feeding and keeping filament
    • 6.1 Reels and spoolers
    • 6.2 Keeping filament
  • 7 Links
    • 7.1 Filament makers and suppliers
    • 7.2 Filament comparisons, introductions, etc.

1 Introduction 3D printer filament Edmonton

This article should list the major 3D printer filaments that are available for 3D printing machines

For each plastic, slicer settings must be adapted. In addition, adjustments should be made for the kind (or the kind of the object part) In particular general parameters like:

  • Extrusion height (related to z-axis movement, typically between 0.1 and 0.5 mm).
  • Extrusion width (related to feed and flow rates)
  • Temperature
  • Feed rate (speed of print head)
  • Flow rate (amount of plastic extruded)

In addition, other parameters like the following must be adapted.

  • Wall thickness
  • filling (density and pattern)
  • horizontal floors
  • first layers

For the moment, this page doesn’t include too many details. Also, information about some filaments I did not try out may be wrong. I do report some concrete experiences in other articles, e.g. as of Jan 2016 the Felix Pro 1 3D printer – 19:03, 17 February 2016 (CET)

2 Rigid polymers and co-polymers

2.1 ABS

  • ABS ((Acrylonitrile Butadiene Styrene) is used for Legos and car parts for example. It is solid, but warps when printed a room temperature. I.e. it is difficult to print objects that have a larger than 4cm footprint. When hobby 3D printers emerged, ABS was the material of choice. As of 2015, it is still popular, but there are other similar alternatives.
  • Temperature: 220 – 260 (temperature depends on both type of ABS plastic and the kind of object your print).
  • Bed temperature: 65

2.2 Nylon

  • Nylon is a very strong material but more difficult to print than PLA. It doesn’t stick well to Glass or Aluminum platforms surfaces and may warp. You can try printing on wood. It sticks very well to Polymide tape (Kapton), i.e. removing the part can pull off the Kapton tape.

Various variants exist. At the time of writing, Taulman 645 seems to be popular. Since it is fairly expensive, you also can consider the Bridge filament which is not as strong, but cheaper and easier to use. It does work fairly nicely with a modern printer such as the Felix Pro 1, i.e. am “open air” design with a 0.35mm hotend.

Printing tips for Bridge Nylon

  • Print slowly
  • Print larger layers (e.g. 0.2 to 0.3)
  • Fan = off (50% for small objects)
  • Temperature = 255C
  • Bed temperature = 45C or more (e.g. I use 65)

Problems:

  • Nylon warps a lot or a bit in the case of Bridge Nylon. Use the same strategies as for ABS.
  • Nylon soaks up water from the air (within a few days) and then will sputter and make your prints uglier. Some people will heat it in the oven at low temperatures. I put a halogen lamp on top of the roll.

2.3 PLA

  • PLA (polylactic acid) is made of starch (i.e. plants). It doesn’t warp, but it’s not very solid and starts deforming (melting) at relatively low temperature. PLA is probably the most popular filament.
  • Temperature: 180 – 220
  • Bed temperature: 55

2.4 PET(G/T)

  • PETG is a combination of PET (polyethylene terephthalate) aka polyester and different concentrations of glycol (G). PETG is a strong filament similar to ABS in strength, but it prints more like PLA.

Properties of PET (The “G” or “T” will modify this)

  • Is the most recycled plastic (e.g. softdrink bottles). It is not biodegrable like PLA, but recyclable.
  • No shrinking or warping
  • No smell
  • It does not degrade in water or absorb water, also since it bonds very well, objects should be watertight. That is at least the case with T-glase
  • It is US FDA approved for food contact
  • Unlike PLA, it is not brittle and it is a bit more flexible than either PLA or ABS

General print properties:

  • Temperature: 210 – 260
  • Bed temperature: 55

There are very different variants, e.g. see the T-glase below.

  • Amphora™ 3D Polymer, made by Eastman and Helian Polymers. A popular brand is XT sold by Colorfabb, a Dutch company
  • T-glase made by Taulman (see below)
  • PET+ by MadeSolid

2.5 T-glase

T-Glase is a co-polymer very similar to PETG. T-glase is polyethylene-co-trimethylene terephthalate (PETT)

This pretty plastic made is somewhat translucid, has a rather good surface finish, and it shimmers. T-glase (aka “Tough Glass”) can be used as replacement for ABS. It’s stronger and it does not warp or split while printing. This article by Mike Adams (March 11, 2015,) makes a good case for t-glase: It’s solid, safe for (cold) food, watertight, both rigid and flexible, etc.

  • It seems to have low shrinkage and no warping.
  • It sticks to acrylic, glass, and Kapton.
  • Unlike ABS, bonding between layers is very good (i.e. makes cups watertight).
  • It doesn’t produce fumes or smells when printing.
  • Material density: ?
  • Bending temperature: 78 C

Parameters below were taken from here and here

  • Print temp = 240 (maybe 250)
  • Nozzle = any size, but maybe more than usual extrusion ?
  • Extrusion width = about 90% of the Nozzle diameter, e.g. 0.315 mm for a 0.35mm nozzle
  • Print speed, about half speed of ABS
  • Retraction = .5mm/.1mm nozzle or for a .5mm nozzle = 2.5mm
  • Print bed = glass with a PVA coat, Kapton,
  • Print bed temperature: 45C

This worked for me on a Felix Pro 1 printer, but I probably have to optimize some stuff.

Other tips:

  • To reduce glass breakage, don’t cool the bed before removing the part (have it at least at 35 C).
  • When you forcibly remove it, a shattered piece can reach your eye

3 Solubles

These are great for printing support structures with a dual head printer.

3.1 PVA

  • PVA (Polyvinyl Alcohol) can dissolve in water

3.2 High Impact Polystyrene (HIPS)

HIPS has similar structural properties as ABS, but warps less during printing. According to a Lulzbot tutorial, “the most practical characteristic of HIPS is its ability to be sanded, glued, primed and painted with acrylic paints once the print is completed.For anyone printing scale-models, miniatures, and even cosplay items, this is a outstanding feature of an inexpensive material. HIPS is also very light-weight, making it even more ideal for wearable objects. ” (Feb 2016).

Some properties:

  • HIPS is like ABS, a petrochemical synthetic polymer and not biodegradable
  • It is often used to pack food, i.e. it is not toxic. Examples are styrofoam or yogurt containers.
  • Although it is a fairly strong polymer, it is often used for support of ABS prints, since it is very easily dissolved in limonene (a strong but easily available chemical).

Printing tips (not tested): Print temperature: 220 to 240 Bed temperature: 100 to 120

Limenene can be a by-product from the citrus juice industry, since it can be extracted from the rind of lemons and oranges. It can replace more aggressive solvants like turbentine. Read more at BioChemcorp. It can be bought from on-line stores like this offer from Amazon. We didn’t try using Limene. There are conflict reports about its use, e.g. read this challenge by DBrowny3 (2015).

From what I understand, using HIPS as support is ok if one can remove most of it by breaking it out, then use d-limone to remove the rest. To do so, use gloves and do it outside !

4 Flexible

4.1 Soft PLA

Is a kind of PLA that is flexible (does that really exist ?)

  • Temperature: 220-230
  • Bed temperature: ?

4.2 Thermoplastic elastomer (TPE)

There are several variants of TPE. As a general rule, TPE must be printed with less speed than PLA (e.g. 20-30 mm/second). It is also important to have a strong extruder that does not heat in the upper part. Bowden extruders will not work, since one cannot push very flexible filament over a long distance.

Well known variants of Thermoplastic elastomers are:

4.2.1 Arnitel

  • Arnitel is a flexible filament that produces very strong prints, but difficult to print since it doesn’t stick well and since it warps like ABS
  • Temperature: 220-230
  • Bed temperature: 65

4.2.2 NinjaFlex

  • NinjaFlex is a thermoplastic polyurethane
  • Similar to Arnitel, maybe not as strong and more reactive to solvants, but easier to use
  • Print temperature 245 °C at low speed (e.g. 30 mm/s)

4.2.3 NinjaSemiFlex

  • Harder (less elastic) than NijaFlex (not tested)

4.2.4 3D Prima TPE

3D Prima TPE is a flexible filament that produces “rubber” like objects (if you print with little fill you can create “squeezy” things)

  • Much cheaper than NinjaFlex.
  • It is a easy to print, if your extruder can handle it (see next item). The result looks and feels great.
  • This filament is very easy to print, if you can manage to extrude. I believe that you need a hotend that is only hot near the exit area. Since the filament is really flexible (before printing), pushing through the extruder can be tricky. Works OK with my Felix 2 and Felix Pro printers. With the Felix 2.0, only works if the hot-end doesn’t have any “PLA balls” (rests) inside. It cannot push these down. Extruding some ABS before inserting the Prima TPE does help.
  • Prints between 190 and 240 degs., Print bed at 50-80, low speed. I used 220, 55 and up to 45mm/s …. however I don’t have enough experience to provide any solid information.

4.2.5 Plasticized Copolyamide TPE (PCTPE)

Nylon-based TPE, made by Taulman sold by 3D Prima, also available on amazon.fr (not yet tested).

4.2.6 FilaFlex

  •  ?

4.2.7 Nunus TPE

  • Nunus Flexible Rubber Filament
  • Temperature 210 – 230° C
  • Platform temperature: 20 – 50 °. For my first successful prints I added glue plus a raft – Daniel K. Schneider (talk) 14:05, 7 September 2015 (CEST)
  • Speed 30 mm / s. Maybe you could print faster, but it’s important that the plastics bonds when hot. Otherwise the object will be brittle, e.g. the infill will be weak, layers will not stick together.
  • This filament is by no means like rubber. It just feels much more flexible than PLA, i.e. you can bend but not stretch this. Unlike Arnitel, you also have to use some “decent” fill (5% fill will not bond IMHO).

5 Composites

Composites are often based on PLA or ABS (e.g. 80%) plus other ingredients (e.g. 20%) like metal particles or wood fibers.

Over the last two years (2014/2015) the most creative inventor of composite filaments has been Kai Parthy. He invented laywood, laybrick, laywood flex, bendlay and so forth. A full list of these is available here.

In the meantime, other manufacturers offer their own blends, in particular combinations with wood.

5.1 Laybrick

Laybrick, according to Simon J. Oliver is a thermoplastic with fine-milled chalk as a filler, and so it prints with a decidedly ceramic look and feel, and an off-white putty color. In his blog post (2013), he writes that laybrick is an “easy-to-work-with and forgiving material that has a striking but neutral appearance that easily hides the tell-tale layering that mars many 3D prints, without needing to resort to ultra-fine layers. I’ve found that the attractive texture and warm feel work well for sculptures and bowls that invite handling, and also for printing 3D scans of people, where the ability to hold detail and yet not look overly layered is a great combination. Architectural models are another area where I expect to see a lot of potential. LayBrick is clearly not designed for harsh environments of high temperature, solvent exposure, or mechanical wear, so its applications will be mostly aesthetic and artistic – but for those, it opens up whole new vistas compared to traditional plastics.”

Properties:

  • A mixure of sandstone (milled chalk) and binding polymer (PLA??)
  • Printed at 195°C it should have a fairly realistic sandstone effect (after cooling down for at least 2 hours!)
  • No warping
  • The result is fairly brittle, e.g. Lego walls easily break.

Print considerations:

  • No heated print bed is needed it seems (however, I use the same as for PLA)
  • Print speed should be low, e.g. about 40mm/second.
  • Use large layers, e.g. 0.25mm or more. Maybe, add some extra-extrusion factor if you got a 0.35mm nozzle.
  • Print temperature: 165 – 220 ?. Best is probably between 180 and 200. Changing the print temperature changes the results. With higher temperatures one can print faster, but with lower temperatures one gets better quality, in particular with overhangs. In addition, the look of the object changes, lower temperature will make it smoother in theory. In practice, I suggest printing at least at 190 with a 0.35mm nozzle. Most web sites report that up to 195 C, the skin should be smooth. This is not the case with our 0.35mm nozzle printer. Printing at 170 to 180 C gives rough results, probably due to bad plastic flow.
  • Since the filament can break, it’s probably not a good idea to print it with a Bowden extruder (motor far away from the hotend)

5.1 Laybrick

Other tips:

  • Laybrick breaks easily and cannot be re-spooled since it may break. You could use a flat wide spooler or hang it “as is” on a chemistry stand. The inventor of this filament has a picture on his website of a new spooler that one probably will be able to buy (Y_COIL-PACK-HOLDER)
  • If the object has fragile parts (e.g. walls, feet, etc.) do not remove it from the print bed before it is hardened, e.g. wait for 2-4 hours ! However, you also should be aware that laybrick can stick fairly well once cooled down, so there may be a tradeoff.
  • Keep it inside a plastic bag
  • Make sure that the filament does not run out. Even a printer that waits printing after the filaments stops coming and allows you to reinsert filament cannot prevent an ugly missing layer.

5.2 Laywood

Laywood is a wood-polymer composite made from 40% recycled wood particles mixed with binding polymers, i.e. the principle as laybrick.

(to do)

5.3 Bendlay

Bendlay is also made by Kai Parthy who invented Laywood and Laybrick.

6 Feeding and keeping 3D printer filament Edmonton

6.1 Reels and spoolers

Most 3D printers do not come with an acceptable spooler and for two reasons: They offer too much resistance and there is a high chance that some rolls will not fit.

  • Mount hole diameters range from 19 to 74 mm. Frequent ones are 31mm, 39mm and 52mm.
  • Outersize diameter ranges from 12.5cm (e.g. Taulman T-glase) to 30cm
  • Inner coil diameter is 5cm to 8cm
  • Typical outer width if from 6cm to 12.5cm.

The best and easiest solution I found is to use a chemistry stand and then print adapters. However, in that case some systems that filter the dust are no longer there (e.g. on the Felix Pro 1 it’s on the side) and you would have to come up with another solution.

Read Universal 3D printing filament spool standard 2014, One spool to rule them all… by Richard Horne, 2014.

6.2 Keeping filament

Moisture

Some plastics are extremely sensitive to moisture. Prints fail or print not as nicely as they could if there is too much humidity in the filament.

  • Very sensitive: PVA and Nylons
  • Somewhat sensitive: PLA (you still can print with 2-year old PLA left in the open, but the results are not as good) and Bridge Nylon.
  • Not very sensitive: ABS
  • Not sensitive: T-glase

Therefore it is crucial to store both Nylons and PVA in an airtight bag or container that includes Silica Gel. Better in a vacuum bag (but then you need equipment for that). This must be done immediately after printing

It is possible to dry most plastics again by putting them into an oven at low temperature (e.g. 50C) for a few hours.

Particles

Polymers attract dust and when dust gets in the hotend, the filament will not flow as well as it should. Therefore it’s a good idea to pass the filament through some felt (or similar) before it enters the extruder. Otherwise, clean of the dust from the surface of the roll.

One can “clean” a hotend by extruding a plastic like ABS at fairly high temperatures (e.g. 155 C). It’s also a good method to open a clogged extruder with PLA or other low temperature plastics. Using a drill is more delicate.

7 Links

7.1 Filament makers and suppliers

See:

The ones below are randomly chosen as examples, no endorsements here !)

Suppliers for Canada

We don’t have time to compare shops, but we are satisfied with the ones below.

Tip: If you buy a printer with institutional money, e.g. for a school, include filament in the printer “package”. This way it will be financed by “investment” money which is always easier to get at than money for buying smaller supplies. Most often, the company selling printers offers a decent enough choice of plastics…

7.2 Filament comparisons, introductions, etc.

Specific

What Material Should I Use For 3D Printing? – Advanced Materials Review #1 – BendLay, Laywoo-D3 and LayBrick. This web site has other nice introductions, see materials

Bibliographic details for 3D printer filament